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ABSTRACT

The design of an intelligent multidisk control module for VNIE bus based svstems

is presented. The control module is designed to support concurrent disk operations on

up to four flexible disk drives with multiple VNIE bus MASTERS. The desmgn is

presented For a UNIX compatible operating systemn lut the operating SNstemn inerface

is kept simple enough that the multidisk control module can be used with most modern

operating systems with minimal changes required.
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I. INTRODUCTION

A. BACKGROUND
The arrixal of the current, more powerful. and faster 16 32 bit icroprocessors

has enabled the development of high performance desktop svystems rivaling main Frame

systems of ten years ago. These high performance microcomputer systems are capaiie

of supporting multiple users and may consist of several processors working together in

systems of mixed capacity and speed. To effectively use the fuill potential of these high

performance microcomputer systems a different architectural approach to sx stem

organization must be adopted; one that eliminates the traditional small system "bottle

necks". B

One of the areas most in need of an improved architecture approach is the

control of system input output (1 0). Maximum performance is achieved when the

processors are not kept waiting by slower devices but are allowed to continue

processing while the slower devices catch up. This area is particularly important to

multiuser systems where total throughput is I.0 bound, primarily by how fast user

data is exchanged with secondary storage, typically disk drives.

Time lost to waiting is particularly evident in data transfers with flexible disk

drives (floppy drives). In the best case, with the disk head over the data to be

accessed, a typical floppy drive requires 13 to 27 microseconds to transfer a byte of

data. while a typical processor requires less than 1 microsecond to trarisf'er the same

byte of data. This amounts to the processor spending at least 90% of the transfer time

waiting for the floppy drive. This assumes the traditional direct control of the floppy

drive by the processor.

Some new designs attempt to alleviate the floppy 1 0 wait problem by using
direct memory access controllers (DMAC) to do the data transfer. This allows the

processor to set up the transfer, then proceed to other tasks instead of waiting for the

transfer to be completed. Some examples of this are the new IBM Personal System 2

series systems and some high performance VM1E bus system modules produced by

Motorola, Force Computers and Signetics. The DMAC approach elinnates the need

for a processor to wait for a data transfer: however, a "'bottle neck" still exists in a

multiuser system.

9 1



In multiuser systems the user's primary memory space is normally not large

enough to meet program and data needs so portions are held in secondary storae,

disks, until needed. When a user's process requires access to the disks, that procs,
'sleeps" during the transfer and the processor executes another user's process. The

"bottle neck" appears when many processes need access to the disks and the uscr

processes stack up waiting for disk access. This occurs because most desktop systens

attach up to four disk drives to a single disk controller, but only one disk drive can

transl er data at a time . Thus, even if the required data is on a separate disk. the I 0

system can only access one disk at a time. A way to improve disk access is to use

multiple disk controllers to allow concurrent disk operations. The combination of"

concurrent disk operations and direct mcmory access will eliminate the small system

1 0 "bottle neck".

B. DESIGN OBJECTIVES

The objective of this thesis is to develop a hardware kernal of a disk control
module (DCM) that incorporates the benefits of direct memory access and concurrent

disk operations, as discussed above. The DCM should hide the disk drive conunand

and control requirements by accepting high level commands from the host and %,,i

translating the host commands into the commands and control signals required by the

disk drive. The target environment (host system) is a small, inexpensive but powerful

and flexible development system that may begin small and expand to meet user nceed.

The DC*I should be flexible enough to accomodate a variety of cormnon floppy disk

drives and be easily integrated into a system. The hardware and software interfaces

should be general enough to allow easy migration to any system.

To support these objectives a modular design will be developed to achieve an

architecture that can be easily modified to accomodate changes in major interfaces.

The major interfaces, host to DCM and DCM to disk drive, will be kept as general and
as simple as possible to allow easy migration to a variety of host systems. Migrating

to a different bus system, operating system, or changing disk drive type should not

require redesigning the DCM but rather just those interfaces directly affected by the

changes. This should allow cost and performance tradeoffs to be easily accomodated

and changed as system requirements change.
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C. HOST SYSTEM

A block diagram of the host system is given in figure 1.1. The host system will

consist of one or more processors and additional functional modules for printers,

displays, memory, etc. One of the primary attributes of the host system is flexibilty; it

should be able to accomodate functional modules with varying data path widths (8, 16,

or 32 bit), varving access time requirements, and allow the functional modules to be

added or removed with minimal adjustments required. The host is assumed to have

multiuser capabilities but this is not a requirement; the DCM should benefit single user

systems as well as multiuser systems. As shown, multiple DCM 's may exist in the host

system to accomodate heavy 1 0 demands.

BUS CONTROL

PROCESSOR

DCM II

D3CM 2 Ln PROCESSOR

TERMINALS MMR

MODULEPRNE
UNDE3R CONTROLX

DEVELOPMET

Figure 1.1 Host System BIOLk Diagram.
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a. Host Bus Architecture

The host bus architecture is a key element in the flexibility of the systenl.

As indicated earlier, the host svstem will be composed of modules with N ar ing acI

times and different data path widths. The ability to support such a im.xture of modules

is important in allowing older modules to interact with Future designs without

redes inine the older module's bus interface. The simplest type of bus with the above

attributes is an asynchronous bus with support Ior multiple data path widths [Ref. II.

A review of currently available buses [Refs. 231 reveals two possibe bus

sy stems:

• Futurebus (IEEE 1P896) and

* VME bus (IEEE 1014).

The Futurebus is a very high performance asynchronous bus with

multiplexed data paths of 8, 16. and 32 bits. This would have been an excellent choice

but the specification is still evolving and is not published For design use yet.

The VME bus is a well established, high performance asynchronous bus

with nonmultiplexed 8, 16, and 32 bit data paths. The bus system specification is

published, well documented, and has significant silicon support from Motorola,

Signetics. and others. The 16 bit data, 24 bit address version of the VME bus will be

used as the host system bus for the design presented here.

b. Host Operating System

In order to maintain the host's generality and flexibility, the host operating

system should be one that is used on a variety of processor types and is easily changed

or expanded. This host software interfice generality is required to allow the DCM to

be dsigned with relative independence from the host hardware, thus allowing a wider

range of host processor types to be accomodated. The flexibility is in keeping with the

desire to start small and grow as required. It does little good to have a flexible

hardware design if the software can not take advantage of it.

The UNIX operating system fills the above requirements nicely. UNIX

hides the machine architecture from the user and runs on a wider range of processor

types, from microprocessor systems to main frames, than any other operating system.

The DCM can be thought of as a user in this case. Because UNIX is modular and

written in a high level language, "C", it is relatively easy to add or change functional

software modules. Additionally, UNIX has a simple, consistent interface to peripheral

devices and multiuser capabilities. [Ref. 4: pp. 3-41

12



D. MAJOR COMPONENT SELECTION

1. Control Processor

The DCMf control processor is responsible for executing high level conmiands

from the host and coordinating tile data transfers between tile host system bus and ,he:

attached floppy disk drives. The execution of host commands is essentially a translation

process where the terse host commands are expanded into the more detailed command

sequences and control signals required by the floppy disk drives. The performance

required for the control processor is a function of the tasks assigned by thle host

system. These tasks may be as simple as fetching a block of data or as complex as

acting as the system file manager. In all cases the physical characteristics of the floppy

disk drive are hidden from the host and used only by the control processor.

The combination of targethost bus system (VME bus). operating system

(UNIX), and possible complexity of tasking makes the Motorola .MC6S00()
microprocessor an excellent choice as the DCM control processor. The VME bus was

originally designed to support the MC68000 and there are many UNIX systems based

on the MC6SO00 family of microprocessors. Additional supporting attributes are:
* cost - relatively inexpensive, SIO for an 8 Mllz version MC68Q00

* silicon support - extensive family of peripheral support chips available from
multiple manufacturers

* compatibility - upward compatible with more powerful members of the
MC68000 family; pin-for-pin compatible with the MC6S010.
affording an easy upgrade path to virtual machine virtual
memory operation

* longevity used in many current microprocessor systems, ensures
continued future support

* software support - extensive software support from many vendors: including
operating systems, high level language compilers, and utility
libraries

2. Direct Memory Access Controller

The MC68000 has three powerful direct memory access controllers as

peripheral support chips which are software compatible with each other. 1 hey are:

* MC68430 - one DMA channel

9 .MC68440 - two DMA channels

* MC6S450 - four DMA channels

The NC68450 will be used in the DCM design to offer maximum disk drive

support. Reduced versions of the DCM would use the MC68430 or MCS-40 and a

subset of the MC68450 software developed here.

13



3. Disk Drives

The floppy disk drives selected lbr use are IBM 3740 single density lurnat
(F.I) and IBM System 34 double densit. format (\I1M compatible drive,. These are

the most cormmon and least expensive of the floppy drives available today. Tl!ey
include -S inch, 5-1 4 inch and 3-1 2 inch form factor drives with formatted capacities of

ISo kilobytes to 721) kilobytes per disk. The IBM compatible drives were selected

primarily due to cost and availability considerations.

4. Disk Drive Controller
Selecting the floppy disk controller was one of the more dillicult decisions in

the design process. Most manufacturers produce disk control chip sets with various
features. The current trend is to combine the controller with the data separator and
support circuits, reducing the the disk control function to one or two chips. Even in

these reduced count chip sets there is a variety of features available to the system

designer.

The Standard Microsystems Corporation (SMC) FDC9268 floppy disk
controller was selected for the following reasons:

* format - compatible with the IBM 3740 and IBM System 34 formats.
both single and double sided drives

" drives contolled - can control 8 inch. 5-144 inch and 3-1.2 inch drives with
capacities to 720 kilobytes

* single chip - combines disk control with data separator in a single chip

" cost - relatively inexpensive, S15 each in lots of one

" availability - readily available in large and small quantities

" software - software compatible with the very popular NEC 765 Intel
8272 floppy disk controllers used extensively in personal
computer systems

14



Ii. PRELIMINARIES

A. OPERATING SYSTEMS
Operating swstems act as the interface between the machine hardware and the

users. They consist of an organized collection of programns that allocate resources and

provide the users with a set of facilities to interact with the hardware.
Operating systens are aenerallv claified into four structures:

* monolithic systems

* layered systems

* virtual machines
* client-server model

Most modern operating systems, regardless of structure, have the control mechanism

and higher functions implemented in a higher progranming language and accomplish

hardware dependent tasks with calls to procedures written specifically to control the

hardware. [Ref. 5: pp. 36-431
Operating systems generally perform all system input output (1.0) for the users.

The goal of the operating system I 0 software is to present a simple. consistent. easy-

to-use interface to the user. The peculiarities of the hardware are hidden from the user

by organizing the I 0 software as a series of layers, with the lower layers concerned

with controlling the hardware, and the higher layers concerned with presenting tile

easy-to-use interface to the user. [Ref. 5: pp. 116-1181

Layering the , 0 software also allows the higher layers to have a certain amount

of deice independence when dealing with specific types of 1 0 devices. An example of

this is the operating system interface to secondary storage such as floppy-disks (disks).

The basic data structure and data control algorithms are the same for all disks.

regardless of manufacturer or type of disk drive. The higher layers of the I 0 software

can implement data management, and the lower layers can adjust for hardware

variances. [Ref. 5: pp. 118-1201

The lowest layer of U 0 software consists of the procedures that interact diretly

with the hardware. There may be several procedures at this level to deal with the
various hardware requirements such as formatting or reading a disk. This hardware

specific layer of procedures is common for most modern operating systems and is the

simplest common point between operating systems.

... : .,'' ,,.'', 'mw ,' _ ¢ ,1$ N," '' ,%. ..T
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The hardware specific procedure ia~er of the operating svstcm will be t!,e 1CQl

used to interface the disk control module tDC.MI to the operating system. 'i1e

hardware specific procedures are nothing more than software modules that accept
command parameters and data from higher operating system levels and generate the

required instruction flow to activate the required hardware signals to accomplish the

desired task. Interfacing the DCM at this level means designing the DCM to appear

as a software module to the host operating system.

Creating the software module appearance is not difficult. All that is required is

memory accessible to the host and DCNM for commnand and data exchanges. This

arrangement should work for virtually any modern operating system.

B. UNIX

A complete discussion of the UNIX operating system is beyond the scope of this

paper. The UNIX operating system is included here to show that the software interface

selected above is satisfactory for intert'dcing the DCM to a UNIX system. The

following discussion is intended to show the hardware dependent software module

location in the UNIX architecture, the DCM software interface level, and general

interaction with UNIX.

The UNIX operating system can be viewed as a layered operating system. A,

high-level view of the UNIX architecture is shown in Figure 2.1. The outer most layer

represents the user's interface to UNIX. The next layer consists of utility programs

such as a text editor and system command modules. The inner most layer of UNIX.

surrounding the hardware, is the heart of the UNIX operating system, the kernel.

The UNIX kernel allocates resources to and controls all user processes. The user

interacts with the kernal via the utility programs which pass user requirements to the

kernel by well defined system calls. A block diagram o" "he kernel is shown in Figure

The UNIX file subsystem uses index nodes (inodes) and inode tables to identify

and locate files. Each file has a single inode which contains a description of the disk

layout of the file data, logical unit on which the file is located, and administrative data
about the file. The file subsystem translates the user's file name into an inode and
enters the inode into the kernel inode table indicating that the file is active. Each disk

contains an inode list of all the files on the disk, similar to the file allocation table used

in MS-DOS.

16
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[ligure 2.1 UNIX Arzcitecture.

he file subsystem deals with file data on a logical level vikC physical disk lcvcl.

t he internal tables for controlling file data manipulations are based on logical devic

locations. 'lie translation of' the logical device location to a physical devicc location

takes place in the device drivcrs.

The tile subsystem has the ability to cache data as it is manipulated. Caching

data is used to mininize the frequency of the relatively slow disk accesses by keeping

current data resident in kernel memory but'ers. New data read fiom the dik I

normally put into buillers for manipulation and then returned to the disk when it is no

longcr needed. The transfer of data to the bulfrs is accomplished by the device drivers

as directed by the file subsystem.

The device drivers are tailored to particular types of devices. Tlhcre will be

separate device drivcrs for disks, terminals, magnetic tape, etc. The device driver

translates the logical location parameters and operation commands received from the

17



USER LEVEL UE

KERNL LVELSYSTEMI CALL INTERFACE

DEVICE DRIVER

KERNEL LEVEL FHRWR OTO

HARDWARE LEVJEL

HARDWARE

Figzure 2.2 UNIX Kernel Block Diagram.

11le subsystem Into physical locations and operations suitable for the specific type of

device to he operated on, disks in this case. Ihc physical location parameters (sector,I
track. and disk drivc number) and the operation to be plerformed arc passed to a disk

control subroutine in the hiardware control layer. 'I hie disk control suibrotin1c is wr-ittenl

to carry out thc operation on thc spccific disk drive installed.

Tacr*he DCMv will inteifhacc to the UNIX operating system at thc hardware control

lae cv ssentially replacing the disk control subroutinc. Only miinor changes to the

dcvice drivers will be required because thc DCNI will function like the disk control

subroutinc it replaced. The DCNI will appear to the device driver as a softwvarle mo1dle

in mnemory.I
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C. VME BUS OPERATION

The VME bus is one of several bus systems available to interconnect dita

processing. data storage, and peripheral control devices into a closely coupled hardwarc

contiguration. The VME bus is an approved IEEE bus standard (IEEE I01

developed by Motorola. Inc. to support Motorola 6S000 microprocessors as a

backplane bus.

The VME bus was designed to provide the systens designer with a llexible bus

architecture with which to construct microprocessor systems with otl-the-'Iiclf

hardware and software components. Hardware and software components designed for

VME bus applications are available from Motorola. Signetics, Mostek. and others.

The main strengths of the VME bus are best shown by the objectives of the

VM E bus specification as sunmlarized below:

* to allow communication between devices on the VME bus without disturbing
the internal activities of other devices interfaced to the VME bus.

to specfy the electrical and mechanical system characteristics required for
reliable and unambiguous commUnication,

0 to specilfy protocols that precisely define the interaction between the VME bus
and the devices interfaced to it, and

0 to provide a system where performance is primarily device limited rather than

system interface limited.

The elements of a VME bus based system are shown in Figure 2.3. The user

devices interface to the VME bus via the functional modules and bus interface logic.

The functional modules provide protocol control of the interaction between the VNIE

bus and user's devices, and the interface logic adheres to the specified drive and loading

requirements of the interfaced devices. The bus interface logic consists of relatively

simple TTL receivers and transmitters because the VME bus drive and timing

requirements were designed with these ofl-the-shelf interface devices in nind.

As seen in Figure 2.3, the VME bus consists of four sub-buses:

" data transfer bus (DTB) - provides data, address, and control signals to allow
VME bus MASTERs to direct data transfers between themselves and DIB
SLAVES

* arbitration bus - provides a means of transferring control of the DTB between
two or more MASTERs in an orderly manner

* priority interrupt bus - provides seven levels of interrupts for interfaced devices
to request interruption of normal bus activity

* utility bus - provides signals for timing and coordination of power-up and
power-down of VME bus systems

19
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The SLAVE interface to the VME bus is the simplest of all functional modulcs

that transfer data over the VME bus. The SLAVE functional module does not initiate

or control data transfers; it can be thought of as a memory module with additional

decoding logic.

The DC.M will be designed as a VME bus SLAVE with interrupt capability. This

means two functional modules will be used; SLAVE and INTERRUPTER. This is the

minimum configuration that provides a menmory-like appearance and has interrupt

capability.

The SLAVE functional module can be designed as an 8-bit, 16-bit, or 32-bit data

device with 16-bit, 24-bit, or 32-bit addresses. The DCM will be designed as a 16-bit

data device with 24-bit addresses. The INTERRUPTER functional module can be

designed to request interrupts on any one or all seven interrupt lines. The DCM will be

designed to interrupt on any of the seven interrupt request lines. The interrupt level

witl be software selectable by the host system. In the above configuration, the DCM

does not need to interface to the arbitration bus.

As a SLAVE, the DCMI must monitor or generate the following V\IE bus

signals:

* LWORD* - designates a 32-bit data transfer request, monitored by SLAVEs

* D0-15 - bidirectional data lines

* DSO* - lower data strobe (same as 68000 LDS*). monitored by SLAVEs

• DSI* - upper data strobe (same as 68000 UDS*), monitored by SLAVEs

SR, W* - read, write signal (same as 68000 R.W*), monitored by SLAVEs

* AMO-5 - address modifiers ,monitored by SLAVEs

* AOl-23 - 23-bit address lines ,monitored by SLAVEs

* AS* - address stable signal (same as 6S000 AS*), monitored by SLAVEs

• DTACK* - data transfer acknowledge (same as 68000 DTACK"'), generated bv
SLAVEs

* BERR* - bus error signal (same as 68000 BERR*), generated by SL.AVEs
The above VME bus signals function the same as their 68000 memory reference

counterparts with two exceptions, LWORD* and AM0-5.
LWORD* is used in data transfers with 32-bit devices only. As a precaution. all

devices must monitor LWORD* and must respond with a bus error (BERR':) or not
respond at all, which causes the VME bus timer to assert BERR*, if the selected device

can not provide 32-bit data transfers.
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AMO-5 are address modifier lines that specify the type of addressing used in a

data transfer: short (16-bit), standard (24-bit), or extended (32-bit). :\\10-5 also
indicates the type of transfer reqtuested by differentiating between supervisory and non-

priviledgcd data. program. and block transfers.

The DCI will not respond to LWORD" transfers, causing the VME bus timer

to assert BERR*. The DCM will respond to supervisory and non-privileged data and

block transfers but will generate a bus error for any program transfers such as rcading

the DCNI memory as program memory in instruction fetches.

The basic data transfer capabilities specified by the VME bus data transfer
protocol and supported by the DCM are:

byte transfers - even or odd single byte transfers

word transfers - single 16-bit transfers

* read-modif-write - 8-bit or 16-bit indivisible read followed by a write to the
same address

* block transfer - up to 256 sequential bytes transferred with only the starting
address specified

The byte, word, and read-modify-write transfers operate the same as in the standard

6S000 memory reference protocol.
In block transfers the MASTER provides the starting address at the beginning ofI

the transfer. The SLAVE latches the starting address in a counter and increments the

address as the data strobes change. The starting address is provided only once and
incremented by the SLAVE each time the data strobes are negated. -The address stable

(AS ) is asserted during the entire block transfer and AMO-5 are encoded to specify a
block transfer is in progress. The block transfer mode is the fastest data transfer mode

on the VME bus because the address propagation and decoding delays are encountered
only at the beginning of the block transfer.

The INTERRUPTER functional module follows the standard 68000 interrupt
request-acknowledge protocol. The INTERRUPTER generates an interrupt request on

one of the seven interrupt request lines (INTRQ*I-7) and waits for an acknowledge.

The INTERRUPT HANDLER for the asserted interrupt request line responds by
requesting control of the data transfer bus, and after gaining control, asserts interrupt

acknowledge (TACK*) to all devices and sends an interrupt acknowledge (IACKIN"*)

down the interrupt acknowledge daisy-chain. The INTERRUPTERs without active

interrupt requests at the level being acknowledged pass the IACKIN* down the daisy-
chain via IACKOUT* which becomes the IACKIN* of the next INTERRUPTER in
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the daisy-chain. The first INTERRUPTER in the daisy-chain with an active interrupt
at the level being acknowledged stops the I.\CKIN' ['oi prpagating further down ,

the daisy-chain and returns an S-bit vector to the INTERRUPT IIAND[LER via the

data trans'er bus. The interrupt level being acknowledged is encoded in address lines

AI-3. The IACK* signal is used to indicate to all other devices on the V.IE bus that

an interrupt acknowledge cycle is in progress which means only address bits AI-3 are

valid.

D. DISK DRIVES

Floppy disk drles (disk drives) are block oriented mass storage dcvices. The data

is stored as blocks in sectors on the disk. The recording surface is organized as a series
of circular tracks broken up into equally sized sectors. Sector data holding capacity

varies from 12S bytes to 4(.96 bytes. The sector is the smallest addressable data block

on a disk drive.

There are three standard disk sizes: S inch, 5 14 inch, and 3 1 2 inch diameters.

The S inch disk is the oldest version and rarely used today. The 5 1 4 inch disk is

currently the most common and least expensive, but the newer 3 I 2 inch disks are

gaining in popularity due to their ruggedness, compact size, and higher density.

The data and control fields on a disk are organized into a specific format. There

are numerous formats available, but the most common are IBM 3740 (single densitxi

and IBM System 34 (double density) compatible. The data and control fields of a disk

track in IBY, 37-10 format are shown in Figure 2..

Tile sector format consists of the sector address (track sector ID) which identifies

the track, sector, side, and length of tile sector. The sector is accessed by stepping to

the proper track and reading addresses until the desired address is read. The sector

address is followed by a cyclic redundancy check (CRC) as an error check on the

address. The ID gap (GAP2) provides time for the disk controller to compute the CRC

for the address read and compare with the CRC read from the disk to ensure a valid

disk sector address has been read. The sector length field contains the number of b\ tes

written in the sector, not the capacity of the sector: a 128 byte sector with only 100

bytes written in the the sector will have a sector length of 100. The sector address field
is followed by the data field with a data CRC error check. The post data gap (GAPS)

provides time for the disk controller to check the data's CRC plus an additional buffer

space to ensure sectors do not overlap due to variances in tining or disk rotation speed
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1he 111%1 format uses special control charactcrs to mark the beummmiire OF sane

fields. I lic index miark, ID. address mark, anid data address mark are special chiaracters

that can not be written in normal data formlat. InI thecse special characters sonmc oi the

cloc-k pulses arc omitted to creatc unique codes that can not be dulic'Iated III data. A lie

spcia characters arc written onlyV duing11 tlic disk formiat opcrat ionl.

1 hc basic operation of the disk dri~c is relatively simple. Thc disk controller

Instructs the disk drive to move (seek) the read. wite hecad (hecad) to a specific track

and loads time hecad, i.e. puts the hecad in contact with the disk. I hie disk driN e starts

passing (lie inlbrmnation hroni the disk to the disk controller %% here the informatiun is

checked For special characters, sector addresses, and data. When the operation is
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complete, the disk controller unloads the head and waits for the next operation. Not WIl

disk drives follow the above sequence exactiv because newer disk drives have more

capabilities, but the sequence of steps demonstrates the basic disk drive operation.

Disk drives require a variety of sigrals to be exchanged with the disk controller

to accomplish head movement (seeks) and read write operations. The types of signal

exchanged are a function of drive type and age. Older S inch disk drives require more

signals than newer 5 1 4 inch drives. To retain the flexibility of using a variety of disk

drives the disk controller must be capable of exchanging a Full range of signals that can

be customized for the disk drive that is actually installed. The followin2 si2nals are

representative of the signals exchanged between disk controllers and disk drives.

regardless of size or type. All signals are asserted low unless otherwise specified.

* unit selects (USI* ..... U S1 - select one of four disk drives

* head load (HDL*) - instructs the disk drive to put the head on the disk surface

• low current track (IC - 7' ) - notifies the disk drive that the head is above track
-13 so that precompensation can be used if needed

a fault reset (FR*) - resets the disk drive's fault indicator

* write protect (WP*) - notifies the disk controller that the disk is protected and
not writable

* fault (FLT*) - notifies the disk controller that the disk drive has a fault

• ready (RDY*) - notifies the disk controller that the disk drive is ready

0 index (IDX") - index timing mark from the disk drive

• raw read data (RRD*) - composite read data from the disk drive

* write enable (WE*) - instructs the disk drive to write

* write data (WDOUT*) - data to be written on the disk

* head select (lID*) - for two-sided disks, low selects head 0 and high selects
head 1

* double density mode (MFM") - instructs disk drives capable of single and
double density modes to use doubl- density mode

* direction (DIR*) - tells the disk drive the direction tu move the head in
response to a step during seek operations. low = in and high = out

* step (STP*) - instructs the disk drive to move the head one track in the
specified direction

two sided (TS*) - notifies the disk controller that a two-sided disk is installed

* track 00 (TROO*)- notifies the disk controller that the head is at track 00

As indicated in Chapter 1. the IBM compatible 5 1 4 inch disk drives will be used

in the DCM de:ign. These drives were selected primarily because they are readily

available and inexpensive.
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111. HARDWARE DESIGN

Previous chapters defined the interfaces and interaction of the disk control

module (DC.M) with the host system and disk diives. This chapter wvill present the

internal architecture and hardware design created to meet the requirements of the

hardware and software intertaces.

A. ARCHITECTURE

A modular architecture will be used to accomodate changes in major external

interfaces with ninirnum perturbation of the DCM realization. The foundation of the

architecture is a microprocessor-based central control unit (CCU) which provides

overall control and coordination of the DCXI operation. The CCU receives commands

from the host via the host interface and translates these commands into the signals

required, at the disk interface, to accomplish the required disk action. lhe external

interfaces and major component systems of the DCM! are shown in Figure 3. 1.

1. Host to DCM Interface
The interface to the host system consists of three parts:

" bus control - hardware interface to control DCM responses to host bus activity

* host control - software interface for command and status exchange with the host

" data butters - software interface for data exchange with the host
The bus control section of the host interface enforces the host bus system physical
protocols by providing physical control to the software interfaces.

In Chapter II, the host software interfaces to the DCM were shown to be

reflected as memory locations in the host's global memory. The host operating system

views the DCM as a soltware module with specified command parameter and data

buffer memory locations. To the host, the DCM appears and functions much like a

COMMON or global memory area in a program.
The software module appearance is important to achieving the desired

interf-ace generality and flexibility. The host views the DCM as a simple block of

memor, this view is consistent for all programs using the DCM and allows a broad

range of operating systems to be accommodated. Flexibility is achieved by modifying

the bus control section to comply with the selected host bus system protocol for simple

memory reads and writes. This preserves the appearance of the software interfaces as

the bus system protocols change.
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HOST BUS

HO5T INTERFACE EXTERNAL
INTERFACFS

BUS HOST DATA I

CONTROL CONTROL BUFFERS

CONTROL
DCM DMA a

CONTROL CONTROL C RDRIVE

CONTROL Lf nRIVE

Figure 3.1 Generalized DCM Block )iagram.

Incorporating the software interfaces in the host bus interface section zand

trcating them as buffer memories isolates the I)CM internal control functioins Irum the

host. These software interfaces also appear to the DCXI as a block of memory,

analogous to the view held by the host. This memory appearance provides consistent

views of the host and DCM with respect to each other.

This organization of the host to l)CM interface is used to isolate the internal

DCNI control functions from the host system and to provide consistent views of the

software interfaces as seen by the host operating system and internal DCM control

software. The isolation of the DCM control functions provides relative autonomy to

the DCM while it is performing required tasks and allows the DCI internal

architecture and components to be changed without the knowledge of the host,

provided the host operating system view of the software interfaces is not altered.
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2. DCM to Disk Interface

As secn in Chapter 11, the disk interface is rclativelv simple. 1 lie intcrface

requircd for one disk drivc is simply replicated for each drive to be uscd, four in this

casc.

The disk interface consists of TTL type rcceivcrs and transmitters to drivc

control and data lines under the control of the disk controllers onboard the DCM.

3. DCI Internal Architecture

Figure 3.2 is a more detailed block diagram of the DCM reflecting the specific

target host bus, the VM E bus, and the host intcrface mcmory buifers. Internal

interfices between major onboard sections arc shown to illustrate a conflict in internal

bus usage.

VMlE BUS

VMlE BUS INTERFACE DATA

VMlE BUFFER

CONTROL CONTROL

CM CONTROL BUFFER
CONTROL BUFFER MEMIORY

CONTROL

(CCtJ) DIK

CONTROLCONTROL LD I IVE

( DMC) DISK DISK

CONTRNL DRIVE
D ISK D,,_JlISK

CONTR OL __ 1 IE

Figure 3.2 DCXI Internal Bus Contention.
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As indicated earlier, the DCM will be controlled by a microprocessor system.

Typical microprocessor systems have a single global bus connecting all components to

the nicroprocessor: the system in shown in Figure 3.2 has the same property. This

single bus system may lead to a conflict in the DCM application because two

component systems, CCL and DMAC. will be competing for use of the bus. This bus

contention arises any time a DMA operation is in progress and the CCU tries to access

the bus for program memory references or to set-up a disk controller for a data

transfer. This bus contention will degrade system performance, especially :vith high

DMA usage. The contention can be reduced by splitting the CCU global bus into two

buses as shown in Figure 3.3.

This dual bus arrangement eliminates bus contention during C('U

communication with the host controi buffer memory by separating the data flow path

and host command path into two sections:

* CCU local bus - accessed only by the CCU, connects CCU memory and those
components needed flor host conuand receipt and not needed lor
actual data transfer

* global bus - shared by the CCL and DMAC, connects those components
involved in data transfers

This bus arrangement allows host commands to be received and interpreted without

bus contention.

Bus contention will still occur when the CCU attempts to communicate with

the DMAC or disk controllers during DMA operations, but the impact can be
nuininuzed by allowing the CCU and DMAC to share the global bus on a cycle-by-
cycle basis. This bus sharing can be prioritized to ensure that disk data overrun does

not occur.

The final architecture, incorporating the features described in preceding

discussion, is given in Figure 3.4. The five major sections are summarized as:

1. ost Interlace

a. controls all communication between the host and DCM

b. appears to the host and DCI as shared memory
2. DCM Control

a. microprocessor system controlling overall operation

b. shares global bus with DMAC
3. Global Bus Control

a. arbitrates global bus access

b. prioritized to ensure disk data overrun does not occur
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VME BUS

VME BUS INTERFACE VATA

VME BUFFER
BUS MEMORY CONTROL

CONTROL CONTROL

CONTROL B UFFER MEMORY
MEMOR Y MEMOKRY '

DCM : = C OA

cBuS GLOBOAL BU /CCONTROL

13RIVE

u DM u l Bus Confgat

DISK DI

Figure 3.3 DC.%, Dl1 Bus Configuration.

MIA.X.. Control

a. controls data transfer betwecen disk controllers anid data N111cr memory

b. primary user of global bus

5. Disk Control
a. disk drive interface
b. controls basic disk drive operation

The remainder of this chapter presents the hardware realization of the above

sections. Jlhe diagranis used may consist of Flinctional blocks reprcsenting groulpS of

devices. Details of the functional blocks are provided in Appendix A.
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B. HOST INTERFACE

The host interface will be treated as two general sections:

• softwarc interface - the memory model of the DCSI as seen by the host
operating system, mid

" hardware interface - hardware required to prescnt the software interface to the
host.

1. Softiiare Interface

Figure 3.5 provides the memory map of the DCSI as viewed by the host

operating system. The memory space presented to the host is an 8 kilobyte block

orgai/ied as 16 bit words with addressing to the byte level in typical 68000 style

memory organization. I lost address bits A13 thru A23 are user selectable to allow this

block to be mapped anywhere in the host's 16 megabyte address space. p

.ME BUS SIDE DCM

WORD ADDRESS MEMORY MAP

A2:3-A13 A12 All-Al I BT
(HEX> UPPER BYTE I LOWER BYTE

s0ECTA3X a 958S DICM STATUS

8 9. SEMAPHORES

S sam DISK I STATUS

ee DISK 2 STATUS

8 8181 to DISK 3 STATUS

1 DISK 4 STATUSo se
o 21 DISK I COMMAND

8 212 DISK 2 COMMAND

8 r604 DISK 3 COMAND

7 c0DISK 4 COMMAND
am NOT USED

1 FF_ __

. we lDISK 2 DATA

I HFEDISK 3 DATA
I Co DISK 4 DATA

I ___________________

FiLcure 3.5 1 lost Vicwv of DCNI Memiory Map. .
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The DCM memory block visible to the host consists of the host control and

data buffer memories of Figure 3.4. These memories are partitioncd into smnallcr

functional blocks for the following uses:

* DCM status - four bytes representing the overall status of the l)CN

a semaphores - one byte per disk indicating the availability of a disk for use (four
bytes total)

e disk status four bytes per disk indicating the status of the last operation
performed by a disk (16 bytes total)

* disk command - 505 bytes per disk for host cormnands plus one bytc for
command present indicator (2024 bytes total)

* not used - two kilobytes reserved for command space expansion

• disk data - one kilobyte per disk for disk data storage (four kilobytes total)

The details of the partitioned block formats will be presented in Chapter IV with the

software development.

The command present byte in each disk command space is used to notify the

DCM that the host has an active command present for the indicated disk. This is

accomplished by generating an interrupt to the CCU when the host writes to the last

byte location in the specified disk command space. The interrupt generation is totally

transparent to the host.

The memory operations that are supported in the DCM, host shared memory

are:

* single byte (upper or lower) read:write

* word (double byte) read write

* block word read. write on blocks up to 256 bytes long

* uninterruptible read-modify-write cycle for semaphore support

Only the details required for hardware implementation of the shared memory

are presented above. The format and use of the software interface will be presented in

more detail in Chapter IV.

2. Hardware Interface

Figure 3.6 is an expanded view of the major sections of hardware used to

implement the software interface. The host control buffer memory and data buffer

memory are combined into a single dual ported buffer memory module for simplicity.

Each major block will be described below.
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Figure 3.6 1 lost Intcracce Block Diagraii.

a. I"ME Bus hiteriice

Figure 3.7 shows the signals exchanged betweeni the D)C.%1 and VME bus.

The devices shown for driving or receivingz the signals arc those reconunended in the

VME bus specification. "The followitig signals are connected to special purpose deNiccs

designed specifically to generate or receive themn in V.ME bus applications:

• BERR*

• D'[ACK*

* lACKO
SIA' K I N-
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The special purpose devices are used in the bus control and interrupt generator section,

of Figure 3.6 and will be discussed in the design of those sections.

b. Buffer Alemorv

The host control and data buffer memories are implemented as dual ported

memories with host access via port A and DCM access via port B. [igure 3.8 shows

port A of the buffer memories which implements the memory map of Figure 3.5. The

host control and data bufter memories are separate, byte addressed, dual ported

memory banks. The port B operation of these memories will be discussed as part of the

CCU and DMAC memory designs.

There is a wide range of devices available for implementing the dual ported

memories, from dual ported dynamic RANI controllers to very fast static RAM de' ices

with onchip arbitration logic. The devices used in this design are Integrated Device

Technology, Inc. (IDT) static RAIs with onchip arbitration and a wait signal.

The IDT devices have an excellent speed range, from 25 nanosecond to 120

nanosecond cycle time, and onchip arbitration that allows both ports simultaneous

access to the memorv matrix as long as the addressed locations are not the same. If

both ports attempt access to the same location, the winning port gains access and the

losing port has the wait signal asserted indicating a delay in access. The speed range is

desirable to allow the DCM to provide a range of memory performances to support

desired VME bus throughput versus cost tradeoffs with minimal changes in the

hardware,

The host control buffer memory is composed of two devices:

" IDT7130 100 nanosecond cycle time, organized as 1024 by 8 bit memory
locations with onchip arbitration and wait signal

" 1DT7140 - 100 nanosecond cycle time. organized as 1024 by 8 bit memory
locations and shares the IDT7130 arbitration logic

These devices are designed to work as master (IDT7130) and slave (IDT7140) to

minimize cost and complexity. The IDT7130 controls the arbitration and drives the

wait signal for both devices.

The data buffer memory is also composed of two devices:

I IDT7132 - 2048 by 8 bit version of the IDT7130

I 1DT7142 - 2048 by 8 bit version of the IDT7140

The operation of these devices is the same as for the host control buffer memory.

35



BUS SI1DE DCrI SIDE

UTILITY BUS

SYSCLCK - SYSCLCK
SYSRESET* - -SYSRESET*

DATA TRANSFER BUS D81

Doe-15 081

EN D IR
UPPER BYTE DIR
UPPER BYTE EN*

EN D IR

LOWER BYTE DIRI
LOWER BYTE EN*

A01-23- POI-23

Dso* - LDS*
DSI* - UDS*
AS* - SN*

R/W* - R/W*
LWORD*- LW*

BERR* ~.BERR*
DTRCK* . DTACK*

PRIORITY INTERRUPT BUS

INTRQ*1-?- IR0I-7

IACK* _______IACK*

IACKIN* 'IRiCKI*
IACKOUT* IACKO* -

Fig'ure 3.7 VNIE BuIs Interface.
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riceure 3.8 BuIller Memior% Port A.

C. AIodie Sclect

'I lie Module select circuit, V'iCUIC 3.9, is used to decode address bits Al I
thro-L A23 and tile address niodiller codes ANI() tliru AN15 to determine if tlic currentI

V\1 L bus memnorv cvcle is intended for thils DC.

The DCNI will respond to standard address single b~ te. word and block

word data transficrs as described ini Chapter It. Program accesses, such as attemlpting I
to read thle DCNI buffer memories as instructions, will result in no response and cauLse
tile bUS tinier to time out and assert the bus error siwial.

The mnodulc select circuit generates two signals required by othecr circuits.

The module Select signal (MODULE SEL*') Indicates the user selected address switches

TMtch A.\13 thru A23 of thle VNl E bus and the address modifier lines are set to standard

address data tranisfer. [hei MODULE SEL" sigznal no0tifIes thle bus control section thdt

thle current miemory cycle is For this DCNI.

[ lie block traiislr signal ( hBLI) results wVhen tile address nodifier lilites aMe

set for a block transf'er. 'Ihis signal enables the address cou~nter circuit to ciL etnent the

mnemorv address as the dlata strobes chance.
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DS

UDS* 68172

LDS* BUSCON ONBOARD

DSI SLVSELN* ONBOARD*
SYSCLCK - CLK LDTRCKN* - LDTACKN*

MODULE SEL* - SLYN* LBERRN* L _BERRN*
R/W* R/W*
ASN* - RSN*

BERR*( BERRN*

DTACKN*
DENN*DTTACKK*

DT 0 DDIR RESETN* RESET*

INT DTACK* UPPER BYTE DIR

UPPER BYTE EN*

INT BI EN* [LOWER BYTE DIR

LOWER BYTE EN*

SYSRESET*

CCU RESET* RESET*

l'iet;rc 3.10 Bus Control.

The 6S172 asserts the enable signal, ONBOARD, to the othcr interface

circuits i'thc MODULE SEL signal is valid for two trailing edges of tlic clock. fliis

allows the address decoder circuits in the module sciect section sutlicicnt time, ()2.5 to

125 nanoseconds at 16 Nf [z, to properly evaluate the current nmorV clc address.

The ONBOARD signal enables all other circuits, except the V.ML bus generator, to

perform their tasks. lhe VNIE bus generator operates only during interrupt cycles,

which do not require DCYI selection via normal addressing.

Data enable ,nd diICLIion signals are generated in this seLtion and are

shared between data transl'cr cycles Illd il terrupt acknowledge ,:-clcs. i' e intctrupt
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acknowledge cycle uses only the lower byte of' the data bus. This sharing allows otnk

one set of transceivers to be used.

Bus error (BERR*) and data transfer aLknowledge (DIACK") are

generated by the 68172 in response to signals from the timer in the read write control

section. lhe BERR* and DTACK* can be connected directly to the VME bus. The

DTACK: is shared with the VNIE bus interrupt data transfer acknowledge ( INF

DTACK*) by the wire ORing of the open collector outputs.

The reset signal (RESET*) is used to stop all host interface activity.

RESET* puts all major components of the host interface in a clear or nonactive state.

but the host interface remains ready to accept the next VME bus cycle. RESE"I: can

be asserted by the host via the VNIE bus reset signal (SYSRESET*) or by the CCU via

an internal reset (CCU RESET"). The SYSRESET* immediatly resets all DCYI circuits

and forces the DCM into a power-on reinitialization cycle. SYSRESET" is asserted by

the host as a last resort to recover from a catastrophic failure.

e. Address Counter/Latch

The address counter latch section, Figure 3.11, latches address bits AOI

thru A12 and increments the address during block transfer operations. This section

provides address lines to the memory modules and read, write control for memor" bank

selection.

The circuit consists of a parallel loading S bit binary counter for A < S.. 1 >
and four D flip-flops for A< 12..9>. The binary counter acts as a transparent latch

when the load input (LD*) is asserted and latches the input address when LD* is

negated, i.e. on the rising edge of LD*.

The LD* signal is driven low by ASN* going low at the beginning of the

memory cycle and before ONBOARD* goes low. This is the state during A13 thru A23

decoding prior to DCM selection. When selection takes place, ONBOARD'" will be

asserted forcing LD* to go high, generating the rising edge needed to load the counter

latches and D flip-flops. The LD* signal will not generate another rising edge until the

DCM is deselected and reselected to begin a new memory cycle.

Block transfers are treated as a continuous memory cycle because AS\*
remains asserted through the entire transfer. In this case the block transfer enable

(BLr) with DCM selection (ONBOARD*) provides a count pulse to the counter when

the lower data strobe (LDS*) is negated. This allows the address to increment between

data strobes. This circuit requires that the data strobe be low before the DCM is
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4 D-FF's

R<__12.. __1)_ P( 12.. 9) F'17 A<12.. 1

8 BIT
BINARY

AM. DCOUNTER

LDS* 
DO-B 00-6

ELT r Up

ONBOARD* 

* C

AN m mRESET*

Figure 3.11 Address Counter,'Latch.

selected. 'lhis is guarauteed by the V.ME bus specification Which rCquircs the data

strobes be asserted within It) nanoseconds of ASN* assertion. and the DCNI election

delly during module select decoding, a minimum of 62.5 nanoseconds.

Thc counter requires a maximum of 27 nanoseconds to increment and

present stable outputs. -lChe data strobes will be negated, high, for a hininjunIL of 3()

narmoleconds. This ensures the address is incremented and stable by the start of the
next data transf .er.

f. Read/llWrite C'ontrol

The read, write control section, Figure 3.12, generates the signals required

to access the dual ported memories and terminate indiN idual translers. %

The read. write control signals are typical of most memory systems. lhe
chip enable signals (DATA SEL* and CONI SEL") select the proper memory bank

based on A 12; A 12 =0 selects control memory and A 12 = I selects data memory. lhe

chip enable signals enable both upper and lower bytes to be accesscd in the selected

mcnory oank. The read, write and output enable selects the upper and, or lower byte to
be aLcOcesd.
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Abnormal termination is accomplished with the bus error (LBLRI) signal.

LBERR* is asserted one microsecond after data strobe assertion if no valid address i I
decoded or immediately if a long word transfer is attempted.

g. Command Interrupt Generator

The command interrupt generator section, Figure 3.13. generates interrupts

to the CCU when the last byte in a disk command space is written to. These interrupt

byte locations are (IlEX):

a 148 for disk I
* 205 for disk2

• 302 for disk3
• 3FF for disk4

This circuit uses four D flip-flops as interrupt flags, one per disk. that

generate the interrupt requests to the CCU. The D flip-flops have asynchronous preset
and clear inputs. These inputs are used to provide timing isolation between the host

interface and CCU. The flag flip-flops are cleared during the interrupt acknowledge

cycle from the CCU.

The flag flip-flops are set by the command interrupt address decoder. This
circuit decodes address lines A01 thru Al2 for the above listed combinations and

generates the flag set signals when they are written to.

h. VAIE Bus Interrupt Generator

The VME bus interrupt generator section, Figure 3.14, sends interrupts to

the host via the VME bus. It can interrupt on any of the seven interrupt lines and

provides an 8 bit vector over the bus during the interrupt acknowledge cycle. This

circuit is based on the Signetics 68154 interrupt generator (INT GEN) chip which is a

special p., -nose device designed for VME bus use.

The 68154 is a programmable device that can be set to interrupt on anyI

interrupt level and more than one interrupt level may be used at the same time. The
CCU can also program part of the vector sent during the interrupt acknowledge cycle.

The upper seven bits of the vector are provided from a register within the 6S154, the
upper five of these are provided by the CCU and the remaining two reflect A2 and A3

from the VME bus. The lowest bit is provided externally by the designer and is

normally Al. The lower three bits in the vector then represent the interrupt level being

acknowledged.
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A0i-2 - ADDRESS INT2*

ONBOARn DECODER INTI*

CL a DICMDIRO*
nICMDIACK*

C. D2CMDIRQ*

D2CM13IAOK*

a.0 D3CMDIRQ*
D3CMDIACK*

04CMDIACK* a0D4CMDIRQ*I
R ESET* _w

Figure 3.13 Command Interrupt Generator.

This arrangement allows the host to specify, as part of the command input,

what level to intcrru pt on, and tc ullcr Iivc hits of' the Vcctor to bC rcturncd, whcii I
the command completion interrupt is generated. This is ideal for a multiuser system

wlicrc the uscrs may he oni different intcrrupt lcvcls.
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ASN*

______________IACK*

58154 IRCI
INT GEN IACKO*

LJJ<7.. O> -L01-7 IRCK* LDS*

INTGENDTRCKw LDTACK* IRCKIN* RI0

R/W* R/W* IRCKOUT* IRGI-7
B M1-z -CLK DS*
LR<l) -N RSTRCK*A

INTGENSEL* -CSDS* IRQ*1-7 __ N DAK

RESET* DTACK*
BDI-7 DO0
Uf2EN * INT BUFEN*

RESET*

IUi-urc 3.14 VNlE Bus Inteirupt Generator.

'I hie OS 15i4 resides In thec V\1 E buIs iterl-ilpt aCknowledg-c dlaisy chain and

will Provide thc in1terrupt Vector if it has anl interrupt active onl the level currently bcirtc

acknowledged. [f it does not have one it passes the interruplt acknowledgcP- in (I AC KI")

down thle daisy chain with JACKO".

The interrupt data transfer acknowledge (INT I)1ACK~t) and data

trans'ccivers for thre vector are sharcd with the data trarisl'r section as preIic 1usy

discussed.

The iuESnl input resets all internal registers andl ncgatc ally pending or

active inteirrupt requests and IAC KU". 1 hec remaining Inputs are froiri the CCU arid

will tie discussed in the DCMI control sectionl.

C. DCNI CONTROL

The DCNI control section exercises control over all other sections. 1 his Is

accomplished by the CCU;, which proganis thle niraj r devi(cs In each section anrd

initliates their actions. 'lle 1)CN control section is based onl a 08000J (CCU)



microprocessor system. The general arrangement of the DCM control section in

relation to the other sections is given in Figure 3.15.

The 68000 treats all external devices as memory. The external devices such as

mcmorv, disk controllers, and interrupt generators are combined into the blocks labeled

local devices and global devices in [igure 3.15. These devices share the same type

control signals driven by the bus to which they are attached. lhe local devices are

those that are accessed bv the CCU on the local bus and the global devices are those

that are shared by the CCU and DMAC on the global bus.

rhis arrangement was selected to allow simple addressing of' all devices ii,, to

provide a common address space for global devices as seen by the CCU and DYIAC.

Since there are two buses that may be in use at the same time, there will be two

separate bus control sections:

* local bus control - consists of local DTACK BERR section and local memory
control section

0 global bus control - consists of global DTACK,'BERR section and global
memory control.

The bus control sections are independent to allow both busses to operate

concurrently, but share common addresses for the global devices. The internal memory

map, as seen by the CCU and DMAC, is provided in Figure 3.16. The CCU can access

all devices on either bus but the DMAC can access only devices on the global bus. I he

lower thirteen address bits for the global devices are the same in the CCU and DMAC

address spaces. The common address space for the global devices is required to allow

the same address decoding when accessed by the CCU or DMAC.

1. CCU Local Memory

The CCU local memory devices are shown in Figure 3.17. The local memory

consists of the host control buffer memory (port B) as previously discussed, a shared

memory between the CCU and DMAC (DMACRAI port A) which is a dual ported

memory like the host control buffer memory, eight kilobytes of ROM for internal

control software, and eight kilobytes of RLAM for CCU scratch-pad use. The RONM and

RAM memories are not specified since any generic devices of the proper size will work.
The only requirement is that the memories have access times less than 250
nanoseconds to allow zero wait state operation.

The DMACRAM dual ported memory is used to minimize bus contention

when the continue or array modes of the DMAC are used. These modes allow multiple

block transfers by putting the block sizes and limits in memory accessible by the
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DCM -,'TEPNAL MEMORY MAP
CCU DMAC

BYTE ADDRESS BYTE ADDRESS
(HEX> <HEX>___________

00000
CCU ROM

003FFF
004000

CCU RAM
0zTFFF
00800
0087FF CCU/DMAC SHARED MEMORY

00C01
0OCcFF HOST CONTROL BUFFER MEMORY

01000
01000 VME BUS INTERRUPT GENERATOR

014000
0141FF DMAC

01500010

0150DATA BUFFER MEMORY 0
01EFFF IFFF

016000 DMPC/CCU SHARED MEMORY 0

0157FF 27FF

017C00 DISK 4 3000
017002 300

174 e DISK2 tn o M0174023402

017ECO 3E0
017E02 DISK 3 302

017COODIK 3C0
017C02 DIK43CO2

Figure 3.16 DCNI Internal Memory Map.

)NIAC. This allows the l)MAC to move blocks of data without CCU intcr~clitiori.

ihe CCU can put the parametcrs into this mcmory via poit A and the DMIAC can

retrieve them via port B with no bus contention. If single ported mecmory is used, the

DNIAC would nced access to the local bus and contend with the CCU For access. l his

would reducc throughput as discussed carlier.

lhe VM E bus interrupt generator (()S154 INT (IN), CCU control side, is

shown in Figure 3.18. It is treated as a two word memory block in local memory but
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DqR~4ItT*
CONflE21~qT*

UPPE BYTE LOW.ER BYT UPPER BYTE LOVER BYTE
IDT1M1-D74a ~ IDT710 IUM714e

WFIr* 1/0 V~IT* 1/0 WA~IT* 1/0o WAX* 1/0
07-70-7 0-7

LED(7.. 0)______
LD( 15. .S

UPPE BYTE LOV~ER BYTE UPPE BYTE LVE arm

IR20 E A2-0C*P12-0 CE* R12-0 c~

Figure 3.17 CCU Local Nlcinor%.

only the lower byte of each word is used. Tlhe 08 154 hias two Internal registers, RI) andI

I, that control interrupt operation. W.), LA < I > = 0. is the inter rupit vector register

whichi contains thc tipper five bits of the interrupt vector to lie provided to thle hlost via

thle VMI E buIs dur11ing interrupt acknowledge cycle. The lower two bits of Rt) are Used toI
enlable all Interrupts and reset all inter rupt levels. RtI, LA < I > = 1 , is the interrupt
request register, setting bit ii in this register gencrates a level ni interrupt onl the V NI Ii

bus. The interrupt requeCst bit will be reset when thle host aLknowleigs that interrupt

level.
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68154
INT GEN

LD(7.. W- LDI-7 IACK*
INTGENDTACK* -LDTRCK* IACKIN*

R/W* R/W* IRCKOUJT*
6 MHZ-z CLK S
LA(I> - S RI-PO3

INTGENSEL* -CSDS* IRG*I-7
RESET* DTACK*

BDI-7
BUFEN*

RESET*

Figure 3.IS CCU Control of VNIE Bus Interrupt Generator.

2. ccIi Support Circuits

Iteure 3.19 sh1ows tWo support cir-CuitS no0t shown1 in prior diagrams. 'Ihlesc are

the clock ge-,.crator cir-cuit, Which provides Llt internal clock signals. atid tile reset

genci ator. Mu 'ich provides the internal CCU reset signal.

[h le clock cenerator circuit is a simiplec biniary counter that divides thle 16 NI 1 I7

input I1w 2, -1. 8 arid 16 to produce the indicated Outputs. J le 16 MNI lz, S MNIl/1. and 4

Nl IlZ ou~tptts are used as the timing signals for the other secctionls.

ihe reset circuit can be activated iM f our wa% s:

* SYSluESEP- from the VNIE bus dirctly generates the internal CCU resetI
* manual reset 1rom a switch to reset the DCNI without alfectine the host
* power on reset to initialize the DCNI when power Is first app1)led

* software reset initiated by the 6S000 reset Instruction to relinitilize all DCNI
LrcuitS except tile 68000)

'I hie SYSREiSIII* anid mlanuial reset are providedl to recover Fromi a

catastrophic failure anid are used ats a last resort. On reset the DCNI reinlitializes itself'

as if power was first applied anid all data anid commands are lost. The power onl reset is

a sImple tinier to provide a lot00tuilliccond resect le al'ter power is lir-st applied to

initialize the l)CN11 for initial operation. The sof'tware reset provides a meanis for the

internal control software to initialize the hiardw are Waithout resetting tile OSO( W.



MANUAL RESET

2.1(LMc HPLT* <68000>

L= L=a RESET* <68000>

2. 3K

SCCLOCK GENERATOR

POWER ON RESET

NESSS TTL OSC 02 -16 MHZ D ,-m

Figurc 3.19 Clock Generator and Reset Circuits.

3. CCII Bus ControlI

The CCL bus control section generates the signals requircd f'or thte CCL[ to

access all devices on the local bus and initiate requests for the global bus. The control

signals are typical memory controls since all devices are treated as memnory by tlic

6 SU00. The CCU bus control section consists of a local memory control section and aI

local DTACK, BERR generator section. The memory control circuits are shown in

igigc 3.20.

The memory select circuit decodes local address hits 14 thru 16 to generate the

device select enables. The device enables are used to enable the individual devices fort

read or write operations with the CCU. The global bus request ((GBLSRLQ ) is also

generated here when the address bits are 101 respectively, this is the address spa~ce of"

the global bus devices in the CCU memory map. ,k

I|i, QI
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MEMORY SELECT

5" Y4 INTGMSEL*

,yi P RMSEL*j

REPD/WRITE CONTROL

UDS*
OEU*

LDS* OEL*

WEU*

L3= WEL*

Figure 3.20 Memiory Control Circuits.

The read writc control circuit generatcs the output enables (01-.* and 0l)-L L)
for read operations and write enables (WEL' and NVEL") flor write operations. 'IHic

output and wrilte enables are asserted on a byte basis to allow byte andI wordl
opet atiotis with the sclectcd dc~ ice on theC local buIs.

I-or global bus dc%-iccs. the G11LSl(LQ is a Icquest to the 0lobal buIS aCCCSS
controller For clobal bus access. *Ilhe memiorv control -,ivnals mcntioned abovc do not

take part in accesses to global bus devices. The global buS COMtro cectiun pro~ides the

control signals required for global devices and lminctions the Same as the local bus

controller.

Theli local lDlACK BERR generator is shown iii [igure .3.21. lhiS circuit

terrnifnawts local dlata bus tranicftrs (1.1) AC K ) and gencrates the local hus error

(LB[:Rl( ) signal if* an erroneous address is rci~renced. "I his circit uses a shilft re~itcr lo
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asIa tiig device to provide thc access timec req ired F r the memryr dCVicC,,, 250~

11ano1scLonds, and a 2 nkicosccond time out to indicate that an unpioiprrlatcd part of

iniorv was referenced. 1l he timing sirunals arc combined with the device seIlts to

allow the usC of dcvices with various access timles.

I_ NTGENDTPOK*
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be asserted on the local bus uitil the CCU has control of the gloixial bus. '1hC

GI)T..\CK' or GBERR will thcn terminate the transfer after the CCU has control of

the bus and the selected devices have had enough time to respond.

-. Interrupt Control

Ihe interrupt control section prioriti/es interrupt requcsts, gencrates interrupt

acknowledges anid provides interrupt vectors for those devices that do not provide their

own vectors. A summary of the intcrrupt codes used is provided in 1able I and I igure

3.22 shows the circuits that generate these codes.

TABLE I

INI ERRLPT CODES

ICKNOWLEDGE VECTOR
INTERRUPT EN'CODED ADDRESS NUMBER ADDRESS

SOURCE LEVEL IPL<.. 0>* LP<3.. I) <DEC) <HEX)

DMACIRQ* 5 0 1 0 1 0 1 DMAC WILL PROVIDE

D4CMDIRQ* 4 0 1 1 1 0 0 68 110
D3CMDIR * 3 1 00 0 1 1 67 0C
D2CMDIRQ* 2 10 1 01 a 65 108
DICMDIRQ* 1 I 1 00 1 65 104

i here are two ty pes of intetrupts pros ided for in the DC, I:

* command present interrupts (1)iCNIDII,Q"-.4CY, DIRQ ' ) gecnerated iin the
host interface as previously described

* 1).1AC interrupts (I)Yl\CI RQ*) which include interrupts generated by the disk
controlIcrs

1 lhe I)YIAC is configured by the CCU to provide interrupts and vectors on

complction of I)YIAC operations or in response to disk controller interrupt requests.

[lie CCL" configures the D I\C, via soltware. by wi iting! interrupt vectors into tie

interrupt vector registers in the I)MAC for each of the attached disk controllers and Iy

cenabling disk controller interrupts. Ihis allows the D.IAC to consolidate the four disk
tntrollerg interrupt request line,, into a single interrupt request linec and provide a

unique vector for each disk controller.

Interrupt requests to the ('C l are prioriti/ed by the interrupt priority encoder

with I)IAC interrupts as the highest priority. D.IAC interrupts are the higliest
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INTERRUPT PRIORITY ENCODER

1 I PL2*
DMACIRQ* 1 ALI PL1*

DACI9DIRO* 1 eIPLO*

D3CMDIRQ* 
11

DJ&C1DIRQ*12 E

INTERRUPT ACKNOWLEDGE

D3CIACK*
YSDIRCK1*

T3 D4CMDIPCK*
D2C3IIRCK*

svr~c 1CMDIRCK*

INTERRUPT VECTORS
(EXCEPT FROMI DIPC>

eDa as70

Al Do

DMPCIRCK* NVC *
FC2
FC1

1:iurc 3.22 Interrupt Control Circuits.
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priority because they indicate a data transfer termination and will release assets needed

for a new command. The commiand present interrupts are prioritized in the hardware
to allow easy difrerentiation between them during interrupt acknowledge cycles. I he

interrupt handling software treats the command present interrupts equally, first-come.

first-served.

I he interrupt acknowledge circuit decodes the interrupt level being

acknowledged, LA < 3..1 > , to generate the individual interrupt acknowledges required

to put the proper vector onto the data bus. The command present interrupt
acknowledges (DIC\IDIACK*-D4CMDIACK*) to the CMD present flip-flops reset

the flip-flops generating the interrupts to ensure that a command is recognize", only

once. The DMAC interrupt acknowledge (DMACIACK*) enables the DNIAC to

provide the interrupting disk controller's vector and inhibits the interrupt vector circuit.

The interrupt vector circuit is used to provide the interrupt vectors for the

command present interrupts. The upper five bits of the vector are fixed to 01000 and

the lower three bits differentiate between the individual command present interrupts.

This circuit is disabled during DMAC acknowledge cycles because the DMAC provides S

the vector.

D. GLOBAL BUS ACCESS CONTROL

The global bus access control section coordinates the orderly access of the CCL

and DMAC to the global bus. The CCU and DMAC function as global bus

MASTERs, driving the global bus address and control lines and controlling data line

direction, when they have control of the bus.

Global bus access follows the 68000 bus arbitration protocol. The 68000 bus S

arbitration protocol is a three signal handshake (request-grant-acknowledge) protocol

that ensures only one bus MASTER is given bus control at a time. A MASTER
requests bus access by asserting a bus request (BR*) to the bus controller (68000 or
external control unit). The bus controller asserts bus grant (BG*) to the highest S

priority requester which indicates that the requesting MASTER may take control of'

the bus when the current MASTER relenquishes the bus. The requesting MASTER
then monitors the address stable (AS*) and bus grant acknowledge (8GACK") signals
to determine when the current MASTER relenquishes the bus. AS* negated indicates S

that the current bus cycle is completed and BGACK* negated indicates that the

current bus MASTER has released the bus. After AS* and BGACK* are negated by

the current bus MASTER, the requesting MASTER asserts BGACK* and becomes the
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new bus MASTER. After asserting BGACK*, the new bus MASTER negates its JIR

which causes the bus controller to negate BG* and stair a new round of arbitration. A

new round of arbitration can not begin until the new .MASTER's bus grant is negated

and bus mastership can not change while bus grant acknowledge is asserted.

The DCM's global bus access is controlled by two circuits:

* global bus arbitration circuit which determines which unit, CCU or DNIAC. will
be the global bus MIASTER

* local 2lobal bus interface which connects the CCU local bus to the global bus
when the CC[ gains access to the global bus

1. Global Bus Arbitration

The global bus arbitration circuit is shown in Figure 3.23. The arbitration is

prioritized with the D.MAC global bus request (DMACGBR*) as the highest priority

and the CCU global bus requests (CCUGBR*) are recognized for single cycle transfers

only. Making DIAC global bus requests the highest priority and limiting the CCU to

single cycle global bus transfers ensures that the DMAC can gain global bus control in

time to service data transfer requests from the disk controllers without disk data

overrun.

Global bus arbitration is performed by the Motorola 68452 bus arbitration

module (BAN!) which can prioritize tip to eight potential bus MASTERs and follows

the 6S000 bus arbitration protocol described above. The BAM can be configured to

operate in a local bus arbitration mode or a global bus arbitration mode.

In the local bus arbitration mode the BAM is used to prioritize bus requests

for a 68)00's local bus by passing the highest priority bus request to the 6S000s bus

request input and returning the 68000's bus grant output to the highest priority

requester. The bus grant acknowledge signal from potential bus MASTERs are shared

by the 6S000, BAM, and all bus MASTERs to complete the bus arbitration handshake.
In the global bus arbitration mode the BAM serves as the central bus

controller with no need to request the bus from a 68000. In this mode the highest

priority bus request is passed directly from the BA.M's bus request output (BR*) to the

BANI's bus grant input (BG*) after a 50 nanosecond arbitration delay. The arbitration

delay is required because there may be spiking on the individual bus grant output
signals (DBGO*-DBG7*) during arbitration if multiple bus requests arrive at the saine

time. The spiking and arbitration will be resolved within 50 nanoseconds so delaying

the BAM bus grant input will ensure that the individual bus grant output signals will

not be asserted until arbitration is complete.
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environment. CCU global bus access requires additional support circuits because the

6S000 is designed to be the central bus controller. relenquishing the bus when required.

and does not directly generate the bus request and bus grant acknowledge ignal

required for requesting the bus from another bus controller and holding the bus in a

multiple bus M,ASTER environment. The additional support circuits for handling CCU

global bus access are shown in the lower part of Figure 3.23.

CCU global bus requests (CCLGBR*) are generated in the local memory

control section, as previously described in Figure 3.20, when the CCU addresses deviccs

on the global bus. The BAN! receives the request and will assert l)BG6* in response if

the DlMAC is not using or requesting the global bus. Asserting DBG6" will generate
the enable tCCUGBG*) to the local global bus interface that connects the local bus to
the global bus and allows the CCU to drive the address, data, and control lines of' the

global bus. DBG6,: assertion also enables the clear input of the CCU BGACK flip-flop.

The CCU BGACK flip-flop is used to generate the CCU global bus grant
acknowledge (CCUGBGACK*) and limits CCU accesses to the global bus to single
cycle transfers. In the normal state, when the CCU is not using the global bus, the

CCU BGACK flip-flop is set, negating CCLGBGACK* and allowing normal operation

of DMAC global bus transfers. When the BAN! asserts DBG6*, indicating that the

CCU is the current global bus %IASI ER, the clear input to the CCU BGACK flip-flop

is enabled. Clearing the CCU BGACK flip-flop indicates that the CCU global bus

transfer is terminating and as a result CCUG3GACK* is generated. The CCU BGACK

flip-flop will be cleared when the addressed device asserts data transfer acknowledge

which generates CCU LDTACK*. Asserting CCUGBGACK" causes the BAN! to

negate DBG6* but the CCUGBG* will remain asserted until the CCU global bus

transfer is completed. The final step in a CCU global bus transfer is the negation of

CCU AS*, which indicates that the transfer has completed. Negating CCU AS* sets

the CCU BGACK flip-flop which negates CCUGBG* and CCUGBG\ACK*.
completing the handshake and enabling a new round of arbitration.

2. Local/Global Bus Interface

The local, global bus interface circuit, shown in Figure 3.24, forms a

connection between the local bus and the global bus when the CCU has control of the
global bus. In this case the address, data, and control signals are allowed to pass

between the two buses.
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When the CCU is the global bus MASTER, CCLGBG* is asscrted and the

CCU is enabled to drive both the global bus address lines (GA < 13..1 > ) and global

bus memory control lines (GR W*, G:\S*, GUDS*, GLDS"). In addition the CCL

can drive or receive the global bus data lines (GD < 15.. > . GD < 7_.0> ). The global

bus data transfer acknowledge (GDTACK*) and global bus error (GBERR) are

enabled by CCUGBG* in order to be passed to the CCL to terninate the CCU global

bus transler.

The DMAC interrupt acknowledge signal from the CCU (D%1ACIACK*) to

the DMAC passes through the local global bus interface to ensure that the D\I.\C

does not receive the D\IACIACK* signal while the DMAC is the global bus

MASTER. If the DMAC were to receive the DMACIACK* signal while in the

MASTER mode, the DMAC would terminate its current bus cycle, before completion,

with an error and attempt to respond to the interrupt acknowledge with an interrupt

vector. Gating the DMACIACK* signal through the 1o L, global bus interface ensures

the DMAC is not in the MASTER mode when DMACIACK* is asserted because the

DNIACIACK* signal will not be put on the global bus unless the CCU is the global

bus MASTER.

E. DNIA CONTROL

The D.A control section controls data transfers between the disk controllers

and data buffer memory. These transfers are via direct memory access (DMA) under

the control of a Motorola 68450 direct memory access controller (DMAC). The 6S450

can accept up to four DMA devices and has a built in bus controller to allow it to

assume bus mastership when controlling the data transfers between the l)MIA devices

and memory. Once me DM:AC is progra-wincu by the CCU, the data transfers will

take place without further CCU intervention.

The DMAC is programmed by writing the transfer parameters into a set of

internal control registers, 17 registers per attached DMA device plus one general

control register. The DCM's internal control registers select the mode of transfer,

addressing to be used, priority level, and interrupt vectors to be returned on transfer

completion.

In the DCM, the DMAC is configured for the cycle-steal mode with implicit

addressing. The cycle-steal mode causes the DMAC to relenquish the global bus if no

data transfer requests are present from the disk controllers. This creates gaps in the

data transfers so the CCU can gain access to the global bus to initiate transfeis with
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idle disk controllers. Implicit addressing is used to allow single c.cle operand transl'cr

operation, when a single read or write cycle can move the operand from source to

destination. In implicit addressing. the DMAC provides a single address, the address of

the memory location in the data bufTer memory that is the source or destination of the

operand. The DMA devices, disk controllers in this case, are not directly addressed but

are controlled by the DMA request and acknowledge lines. In explicit addressing, the

DMAC would address the operand source, read the source operand into a holding

register, address the destination, and write the operand into the destination. This

requires two memory cycles, a read cycle followed by a write cycle.

Figure 3.25 shows the signals used by the DMAC to control the global bus and

DMA devices. The DMA device control signals allow the DMAC to control data

transfers with DMA devices without explicitly addressing them as in a normal memory

reference cycle. The data, address demultiplex control signals are used to control the

source of global bus signals when switching between the CCU and DMAC as a global

bus MASTER. The DMAC global bus request, grant, and acknowledge signals follow

the 6S000 bus arbitration protocol previously discussed. The DMAC interrupt request

(DNIACIRQ*) and interrupt acknowledge (DMACIACK*) signals follow the standard

6S000 vectored interrupt protocol.

The DMAC operates in two modes with the direction of the global bus control

lines determined by the mode of operation:

MPU mode - the state that the DMAC enters when the chip is selected
(DMACSEL*) by the CCU in which the DMAC's internal registers are read or
written by the CCU to initiate a data transfer or check status

DMA mode - the state that the DMAC enters when acting as the global bus
MASTER to perform an operand transfer with the disk controllers

In the MPU mode, the DMAC acts like a CCU slave device with the CCU

reading or writting the DMAC internal registers. In this mode the global address lines,

GA < 7.. 1>, are inputs that select the DMAC internal register to be operated on and

the global data lines, DMAC<A8, DO-A23, DI5>, are inputs or outputs for the

operand transfer, The memory control lines (GAS*, GR W:', GUDS':, GLDS*,

D.MACSEL*) are inputs used in the normal 68000 memory access protocol. The

DMAC data transfer acknowledge (DMACDTACK*) is an output to indicate to the

CCU that the transfer is complete.

In the DMA mode, the above signal directions are reversed because the DMAC

is providing address and control signals as the global bus MASTER. In this mode the
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the 1)\IAC bus control section to accomplish the dcmultiplcxng and to control sipnal

direction to correspond to the DNIAC rnodc of operation.

The M)IA devies (disk controllers) and DNIAC arc programmed by the CCU to

move blocks of data between the disk drives and data buffer nicmory. Once thle data

trans1'er is initiated by the CCU], the disk controllers request service by asserting a

request (DIREQ*-D4REQ') to the DMAC. If the DM.vAC is not thle Current global

bus MAS ER,. it will request control of the global bus. After becoming the global bus

controller indicating that the requesting disk controller should put data onl, or read

khit Ii on01i. thle lobal bus as determined by. the direction of' the GI R W siena . 'I lie

DMIAC will continue this process until all active requests From the disk controllers are
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satisfied and then release the global bus. During the last transf'er in a block of data. the

DMAC will assert TCMPL* with the acknowledge to indicate to the disk controller

that the transfer is complete. After receiving the TCMPL* signal, the disk controller
will generate an interrupt request (DIIREQ-D4IREQ) to the DNIAC indicating that

the status of the completed operation is ready to be read. The DMAC will pass the

disk controllers interrupt to the CCU by asserting DMACIREQ* and provide a vector
during the interrupt acknowledge cycle that identifies the disk controller that caused

the interrupt. The CCU uses the returned vector to read the status of the interrupting
disk controller to determine if the operation termiinated correctly.

1. DMAC Bus Control

The DMAC bus control section is shown in Figure 3.26. This section is used
to provide signal direction control and data/address demultiplexing corresponding to
the active global bus MASTER. When the CCU is the active global bus MlASTER, the

signal flow is from the global bus to the DMAC. In this case the global address lines

GA < 7.. > are used for DMAC internal register selection and the multiplexed

DMAC< A8, DO-A23 D15> lines are used as the data path. When the DMAC is the
active global bus MASTER the signal flow is from the DMAC to the global bus. The

DNIAC control signals that direct the signal flow are:
* DMACOWN* - asserted when the DMAC is the active global bus MASTER

and used to enable external address drivers and control signal buffers
* DMACUAS* - asserted when the DMAC is the active global bus MASTFER

and used to capture the value of' the upper address lines on the multiplexed
address data bus. DMAC < A8 DO-A23:D15 >

• DMACDBEN* - used as the enable for external bidirectional buffers

* DMACDDIR* - used to control the direction of the external bidirectional data
buff rs, asserted if the transfer is from the global bus to the DMAC and
negated if the direction is from the DMAC to the global bus

* DMACHIBYTE* - asserted when the DMAC is the active global bus
MASTER and used to allow 8-bit devices to exchange data with memory on the
upper byte (GD < 15..8> ) or lower byte (GD < 7..0> ) of the global bus in the
implicit addressing mode.

The DMAC bus control circuit in Figure 3.26 consists of three functional

sections:
* bidirectional control signal buffers

* address driver latch

* bidirectional data buffers
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BIDIRECTIONAL

DATA BUFFER E IR

Figure 3.26 DMAC Bus Control.

The bidirectional control signal bulffrs arc controlled by DMACOWN.
When the CCU is the active global bus MASTLR, l).IACOWN* is negated and the A
inputs to the control signal buffers are passed to the B outputs, corresponding to the
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CCU driving the controls and receiving the DMAC data transfer acknowledge. When

the DYIAC is the active global bus MASTER the situation is reversed. Df.IA\(OWV'

is asserted and the B inputs to the control signal buffers are passed to the \ outputs.

The address driver latch (LS373) deniultiplexes the upper addiess lines froni

the data lines. As the active global bus MASTER. the DNIAC will assert

D.MACOWN* which enables the outputs from the LS373. The DMAC then drives the

multiplexed address data bus, DMAC <AS DO-A23 D15 > , with the upper address of

the operand and asserts D.MACLAS*. The upper address is latched on the rising edge

o" D.MACUAS*'. At this point the global address bus has a valid address. GA < 7..1

driven by the DIAC directly and GA< 15..8> driven by the address dri'er latch.

The bidirectional data bulrers are enabled by DMACDBEN1' with direction

control from DMACDDIR*. The DMACDBEN* and DMACDDIR* signals are used

for all transfers to or from the D.MAC, regardless of'who is controlling the bus. If the

CCU is the active global bus M;ASTER, DMACDBEN* is asserted after GLDS* or

GLDS* is asserted by the CCU with the directional control, DMACDDIR*, governed

by the GR. W*. If the DMAC is the active global bus MASTER, DMACDBEN" is

asserted after DMACUAS* is negated and before the DMAC asserts GLDS* or

GLDS*, again DMACDDIR* is governed by GR, W*.

The DMACHIBYTE* signal is a special purpose signal used to adapt S-bit

devices to 16-bit word, byte addressed memories when implicit addressing is used in

DMA operations. In implicit addressing, the DMAC provides the single byte address

of the source or destination in memory and performs the transfer in a single bus cycle.

To accomplish this with S-bit devices such as disk controllers, requires an additional

data path when even addresses are accessed. Even addresses will use the upper byte of

the global data bus, GD < 15..8>. but the disk controllers are on the lower byte of the

lower bytes of the global data bus is provided by the IIIBYTE buffer which is

controlled by the DMACHIBYTE* and GR W* signals. DMACHIBYTE* wilt be

asserted by the DMAC when an 8-bit device is used in a transfer with an even address

location. DMACHIBYTE* enables the HIBYTE buffer to gate the upper byte of thI

global data bus to the lower or vice versa depending on GR.W*. If GR W*' is high, for

a memory read, the upper byte read from memory will be gated to the lower data bus

byte and to the disk controller. If GR W* is low, for a memory write, the lower byte

read from the disk controller will be gated to the upper data bus byte and to memory.

In explicit addressing the byte swapping is accomplished by the DMAC internally.
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2. Global Buts Coiitrol

rhe gulolml buIs conitrol sectionl veni ates tlie msi ,ak rcq tired f'or thec IIL h bus

NI .* SITR to access all devices on the 1-10b,1l bu(S. "I he C01ntrol Silc1A na Is cia ted 11-C

standard 68flfl() type 1111111.% control 'jnl.I l1C clUba Ius cotrl'0 SeL: Uim COnSIstS 0C
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GLOBAL MEMORY SELECT

yo D4SEL*i
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A

GAS*

GLOBAL READ/WRITE CONTROL

GUDSI

Fieurc 3.27 Global 'Nleniory Control.I
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The global memory select circuit decodes global address lines GA < 1312 -- to

generate the chip selects for the DMAC (D.MACSEI.*j, data buffer niemnorV

(DATAMEMSEL"), CCU DMAC control mnemory (DMACRA*ISEL*. and di k

controller select (DISKSEL*). The DISKSELP is used as the enable lor another level

of global address decoding, GA< II.. I(,)>. which selects one of the four disk

controllers (DISEL-D4SEL).

The global read write control circuit generates the output enables (GOEE*

and GOEL*) for read operations and write enables (GWEU* and GWEL for write

operations. The output and write enables are asserted on a byte basis to allow byte and

word operations with the selected device on the global bus.

The global DTACK BERR generator is shown in Figure 3.28. This circuit

terminates global bus data transfcers by generating the global bus data transfer

acknowledge (GDTACK*) for normal termination or global bus error (GBERRI'! when

an unpopulated part of memory is referenced. This circuit uses a shift register as a

timer to provide 250 nanosecond time intervals for data transfer acknowledge

generation and a 2 microsecond time out for bus error generation. The dual ported

memories, data buffer memory and CCU DMAC control memory, may be busy during

a global bus access so the timer is inhibited by the wait signal (MEMWAIT*) asserted

by the dual ported memories when they are busy. This allows the global bus access to

resume without generating a bus error when the dual ported memories are no longer

busy.

3. Global Memory

There are only two true memories in the global memory', data buffer memory

and CCU DMAC control memory. The port A circuits of these dual ported memories

were discussed in Figure 3.8 and Figure 3.17 respectively. The port B circuits for these

n,nomries are shown in Figi-re 3.29. The port B circuits are the same as the port A

circuits except for the different signal names used to reflect the global bus as the signal

source. The remaining global memory devices are the DMAC and disk controllers

which are treated as memory but are not true memory devices.

F. DISK CONTROL
A block diagram of the major circuits in the disk control section is shown in

Figure 3.30. The primary circuits are: DMA request delay, disk controllers, and disk
interfaces. The disk controller and disk interface circuits will be presented only once

because they are identical for each attached disk drive.
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Figure 3.28 Global DTACK BIRK. I
The CCU communicates with the disk controllers via tlhe global bus. ' lie dlik

controller's internal control and status registers appear to the CCU as hxtc nicmomv

locations in the global memory. The CCU initiates operations with, and checks status

of, the disk controller by reading or writing to the disk controller's internal registers in

a normal memory reference cycle.

The DlMAC communicates with the disk controllers by using the global data bus,
global read,'write(GR,W* ), and the DMAC DMA deviCe control signals. This

communication is not a standard 68000 memory reference as is the case with the CC

because the FDC uses an Intel type bus protocol with separate read and write lines.

The DMAC will use implicit addressing for DMA transfers between menoiy and the

disk controllers. This means that the global address bus and global memory control
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CLI/MC CONTR~a.. P1-c'r DPR BFE t-V y
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ligure* 3.29 Globa oror *

signals will be Used to control the mcemory operation whifle the 1) \I.( [C )%NI,%d'~
control signals v.Ill be used to control tile disk conltrollers. 'I lie l)\l.C l)Nl. dc ice

control sliznals are suffCiciet for the control of' thc dPsk controller's dnrin111- DI) l\*
operations; however, the disk controllcrs reqluire additionlal Lircuits to gencer L he rcad
and~ write signals needed for data direction control.

Ini CCU memory reference cycles to the disk controller, thle CR. \V sicenal
follows the standard 6SO00 memory reference protocol: GR,/W*= low indicates that
the CCU is writing to the disk controller, GR: VP = high indicates that thle CCU is
reading the disk controller. The disk controller reacts properly to the G R: \%% signal by
placing data on the global data bus during read cycles and taking data From the global
data bus during write cycles.

In DMA operations with implicit addressing, the global address bus and memory
control signals are referenced to the memior being accessed. In this case GCR \Vj
high indicates that the memory is being read by the DNIAC and the data path is from
memory to the disk controller. The disk controller will not interpret the C R, \V* signtal
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Figure 3.31 Disk Controller.

The FDC has two intcrnal registers accessible by the global bus; the main

status register and the data register. The CCU programs the FD)C by writing conuuand
' parameters in the FDC data register and checks status by reading the main status
~register. As previously discussed, the CCU operations on the FDC internal registers

follow the standard 68000 memory reference protocol. The F:DC register selection is
~controlled by global address bit 1 when the I"DC chip select (DnSEL*) is asserted;

G. GA < 1> = low selects the status register, GA < 1 > =high selects the data rcgister. In

DMA operations when DnSEL* is not asserted, such as implicit addressed DMl..\, thec

data register will always be selected.
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The RD* and WR* generators interpret the control signal inputs to determine

the proper sense of tile FDC read (RD2) and write tWVR') signals. The upper \ND

gate in each generator is used to generate the proper assertion level for a standard

6S00) memory reference from the global bus. The lower AND gate in each gcnerator is

used for DMAC implicit addressed DMA operations.

Standard 6S()O memory references from the global bus will have the FDC

chip select (DnSEL*) and global lower data strobe (GLDS :) asserted. These signals
enable tile upper AND gates in the generators and allow the global read write

(GR W*') signal to select the proper FDC read or write signal: GR W" = low asserts

WR':, GR, W*' = high asserts RD*.

DMA operations with the FDC follow the three signal handshake protocol

described for the DMAC. When the FDC is ready to read or write data it will assert a

request (DnREQ) to the DMAC. The request does not go directly to the DMAC but

must be delayed for a short period as will be described in the DMA request delay

section. The DMAC will respond to the request, after becoming the global bus

MASTER, with an acknowledge (DnACK*) indicating that the FDC should take data

from. or put data on, the global bus. The request-acknowledge handshake takes place

for each byte of data transferred. The final signal in the handshake is the transfer

complete (TC.MPL*) signal from the DMAC which is asserted with the acknowledge oF

the linal byte to be transferred. The TCNIPL* and DnACK °' signals are combined to

assert the terninal count signal (TC) which tells the FDC that the final byte transfer is

in progress and will cause the transfer to terminate upon completion of the transfer.

After the last byte is transferred, the FDC will generate an interrupt (DnIRQ) to the

DMAC and follow the protocol described in the DMA control section. It is up to the
CCU to read the status of the completed operation before initiating a new operation.

The above DMA protocol uses the GR,'W* signal to control data transfer

direction. As previously discussed, the GR W* interpretation in implicitly addressed

DMA operations is opposite to that of' normal global bus memory references. [or

implicitly addressed DMA operations the GR W" sense is corrected by the lower AND

gates in the RD* and WR* generators. In implicitly addressed DMA operations the

FDC chip select (DnSEL*) will be negated, disabling the generator's upper AND gates.

and the DMAC acknowledge (DrLA\CK*) will be asserted. Asserting Dn.ACK :" enables

the lower AND gates to correctly interpret GR\W; GR W* = low asserts RD' ,

GR W: = high asserts WR*, providing the opposite read.write sense from normal
global bus memory references.
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The lower AND gates in the RD" and WR* generators are disabled by the

FDC chip select (DnSEL*). This is not necessary if only implicitly addressed I)"IA

operations are performed because DnSEL* and DiL,\CK: will not be asserted togethcr

in implicit addressing. However, the DMAC can use explicitly addressed DMA

operations which use the normal memory reference GR W' sense and asserts DnSEL :

and DnCK*. Disabling the RD* and WR'* generator's lower AND gates with

DnSEL" will allow the proper RD21 and WR* signals to be generated for explicitly

addressed DMA operations. Explicitly addressed DMA operations are not the nor"nal

mode of DMA operations in the DCM because it takes twice as long to move a Lvte

of data. two menmory cycles, but explicitly addressed DMA operations are supported in

case of future need.

The disk control signals shown in 171gure 3.31 were previously defined in

Chapter I1 as the standard control signals used by most disk drives. The disk control

signals generated by the FDC are not all required by the 5 1 4 inch disk drives used in

the DCM, but all of the disk control signals are sent to the disk interface circuit for

bufferini and demultiplexing to make them available in the event that different type

disk drives are installed. This allows changing disk drive types by reconfiguring the disk

drive connector to include the signals required by the particular disk drive installed.

All signals exchanged between the FDC and disk drive require buffering by

receivers and transmitters because the FDC is not capable of directly receiving or

driving these signals. Additionally, four of the disk control signals are multiplexed in

accordance with the operation the disk drive is to perform. The multiplexed signals are

logically grouped into read,write operations (RW*) and seek operations (SEEK). The

multiplexing is controlled by the RW* SEEK signal to produce the signals of

Figure 3.32.

2. Disk Interface

1he disk interface circuit provides disk drive control signal conditioning and

demultiplexing between the FDC and disk drive. The disk drive control signal protocol

calls for driving all signals with open collector drivers, with most signals asserted low.

The disk interface circuit is shown in Figure 3.33.

Signals sent to the disk drive use the 7416 and 741 "7 open collector buffer

drivers with terminating resistors supplied at the disk drive , :ceivers. These dri'ers

supply the required drive current and translate high asserted FDC signals to the low

asserted level required by the disk drive.
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Figure 3.32 -DC Nltlptiplexed Signals.

The disk drive u1sCs opcn collector bnffkr drivers to send signals to the II)C.

741.S240) tristate receivers are used to receive the inputs froi the disk drivc. I lie

incoming signals are terminated at the reccier inputs by 150 olijii resistors, the

terminating resistors are not shown in Figure 3.33.

1 he 741.S240 tristate receivers also multiplex the incoming disk drive siglals

and demtultiplex the I-)C outgoing signals in Figire 3.32. The RW,S FFK signal

selects the proper transmitters and receivers for the chosen operation and disables (puts

in a high impedance state) those transmitters and receivers not selected.

3. DMA Request Delay

In the prior discussion of the DMA protocol that is followked by the II)C, a

need for delaying the FDC's DMA request (DnREQ) was mentioned. 1lie [DC's

DnREQ signal to the DMAC nmust be delayed in reaching the DlNIAC because the

DMAC may respond too quickly for the FI)C. This situation arises because the I)C

asserts DnREQ 800 nanoseconds before data is ready for transfer, but the DMAC may

start the transfer 375 nanoseconds after receiving DnREQ. An attempt to translfar data

before the FDC is ready, less than 800 nanoseconds after DnREQ is asserted, will

result in an error termination of the transfer.

The response time of the DMAC to DMA requests is determined by the state

of the DMAC when the request is received. If the DN'IAC is not the global bus

MASTER, it will take a minimum of twelve clock cycles, 1.5 microseconds at 8 MlIz,

to become the global bus MASTER and start the transfer. If the DMAC is already t!e
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global bus MASTER. servicing another FDC when the request arrives, the DM.\C

may start the transfer in three clock cycles, 375 nanosew.,ndts at SM lIz. This is poibsle

because the DMAC will respond to a request received bef'ore S2 of the current DM\A

cycle immediately upon completing the current cycle. 1 lie time difference between S2 of'

the current cycle and SO of the next cycle may be as short as three clock cycles for a

DIMA read operation.

From the above it is apparent that with more than one FDC attached to the

DMAC there is a possibility of the DMAC responding to a DMA request before the

FDC is ready. A 425 nanosecond delay of' the DMA request from the FDC is required ,

to ensure that the DMAC does not respond before the FDC is ready. The DMA

request delay circuit that provides the required delay is shown in [igure 3.34.

The DMA request delay circuit generates the DMA request signal (DnREQi)

to the DMAC after delaying the DMA request (DnREQ) from the FDC. The delay for

each DMA request is accomplished by two D flip-flops. with common clock inputs.

The delay period is a minimum of one clock period and a maximum of two clock

periods. The common clock input of 2 MHz provides a mininmum delay of 500-

nanoseconds and a maximum delay of 1 microsecond.

The first flip-flop will be set on the rising clock edge after DnREQ assertion.

The first flip-flop's output is connected to the second flip-flop's input which will cause

the second flip-flop to set on the next rising clock edge after setting the first flip-flop.

Setting the second flip-flop asserts the DMA request (DnREQ") to the DIAC.

Minimum delay occurs when DnREQ is asserted one flip-flop set-up time prior to the

rising clock edge that sets the first flip-flop. Maximum delay occurs when DnREQ

assertion does not meet the flip-flop set-up time and must wait For the next rising clock

edge to set the first flip-flop.

I
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3 a L04 DIREQ* D DE2REQ*
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113REQ [ a 4REO l

-5273 L
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Figure 3.34 DMAl, Request Delay.
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IV. SOFTWARE DEVELOPMENT

This chapter will present the interaction between the DCNt's internal control

software and the software of the user module (USER). The user module may be the

host operating system (I lOST) or ally other module on the host bus. It is aSsumed that
all USERs will get pernission from the lOST before accessing the I)CM to ensure

data integrity and security. This allows multiple VME bus YIASTERs to use the DCNI

provided the IHOST coordinates the USERs activities.

The DCYI's internal control software would consist of an onboard operating
system (OBOS) that is capable of coordinating four external USERs and controlling

the DMAC and four disk controllers. This is no small task and the development of the

OBOS is beyond the scope of this paper; however, the basic interaction between the

USER and OBOS will be described with flow charts.

The DCM appears to the USER as a segmented block of memory as described in

Figure 3.5 where each disk has a dedicated host control buffer memory (CMD buffer)

and data buffer memory (DATA buffer). Each disk also has a semaphore (BUSY flag)

to indicate the disk's availability for use, a command present interrupt generator (CMD

interrupt), and a status area (STATUS).
Access to the above memory locations for a disk is controlled by the BUSY flag

associated with that disk. If a disk's BUSY flag is set. then that disk's CMD buffer.

DATA buffer, STATUS, and CMD interrupt memory locations are not to be used by
any USER other than the USER that set the BUSY flag. This is a software convention

that must be followed by all USERs.

The format of a conmand in the CMD buffer is very flexible because there is

only one hardware convention, the location of the CMD interrupt generators. The

software designer is free to choose a command format based on the needs cf the USER

and the DCM's operating system. The following is a simple example of a cotmnand

format to illustrate a possible format for a disk read or write commnand. The format is

organized in bytes with byte I as the first byte in the CM D buffer:

* byte I - number of bytes in the coimnand
" bxte 2 - cotmnand completion interrupt vector number to be returned to the

user upon command completion: the upper live bits are USER selectable and
the lower three bits specifl the the interrupt level

* byte 3 - operation code
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* byte 4 - track number

* byte 5 - head number

* byte 6 - sector number

* byte 7 - data transfer length

The above format may repeat with a new operation code in byte 8 followed ,y more

parameters, etc. The number and meaning of' the parameters following the operation

code may vary with the diflerent operation codes because the OBOS would use a table

look-up algorithm to decodc the operation code and expected parameters.

The primary limitation on the number of operations that can be included in a

single conmand to the DCM is the amount of DATA buffer memory per disk.

Operations that use the DATA buffers, disk reads and writes, will be limited to the

number of disk sectors that will fit into the DATA buffer; this means that a com-mand

would be limited to a single disk read or write if the DATA buffer is the same size as a

disk sector.

A. USER COMMAND EXECUTION

A flow chart of the steps a USER follows in executing a command with the

DCM is shown in Figure 4.1. The USER checks the availability of the selected disk

(Di, n firom I to 4) with an indivisible read-modify-write cycle to the Dn BUSY flag,

setting the Dn BUSY flag, if it was not set. If the BUSY flag was previously set. the

new USER must wait for the disk to be released. This ensures only one USER at a

time gains access to the disk. If a write operation is to be performed, then the data is

written into the Dn DATA buffer. The command is then written into the Dn CMI)

buffer, and the final step is writing to the Dn command interrupt generator, gencrating

the Dn C.ID interrupt to notify the OBOS that a command is present. After the

conmand is issued, the USER continues processing until the DCM responds with a

command completion interrupt signaling the USER to terminate the command.

The DCM will notify the USER of the command completion by generating the

interrupt and returning the vector number specified in the command. The USER reads

the Dn STATUS to determine ifthe command was successful. For a read operation the
data is read from the Dn DATA buffer. The USER indicates that the results, status or
data. have been read and releases the CMD buffer and DATA buffer by writing to the

command interrupt generator which generates the CMD interrupt to the OBOS. At

this point the USER's conmnand is complete, but the Dn BUSY flag is still set.
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The Dn BUSY flags are cleared by the OBOS. This allows the OBOS to take a

disk off-line due to a failure or for multidisk operations such as copving lom one disk

to another disk. The disk copy command can be issued to either the source or

destination disk and the DCM can capture the remaining disk when it becomes

available bv either not clearing the BUSY flag if it was in use or by inunediatelv ,etting

the BUSY l1ag if it is idle.

B. DCM COMMAND EXECUTION

The steps Followed by the OBOS in initiating a command received From the

USER are shown in Figure 4.2. When the Dn CMD interrupt is recognized, the OBOS

locks out further CMD interrupts until the current conmmand is started. The cotnmand

is decoded and checked for validity with invalid conmands causing an error

termnation indicated by an error status code. The decoded command parameters are

passed to software modules that program the DMAC and disk controller for the

requested operation. The OBOS enables CMD interrupts and continues processing

until the command is complete which is indicated to the OBOS by an interrupt from

the DI.AC.

After the OBOS recognizes the command completion interrupt from the DMAC.

the OBOS locks out further interrupts and checks the conmmand completion status of

the DMAC and disk controller. The results of the command completion status check

will cause the OBOS to enter a normal or error status code in the Dn STATUS for the

USER to check. The OBOS then notifies the USER that the command has completed

by generating an interrupt on the host bus and returning the vector number specified in
the command. The OBOS enables interrupts and continues servicing other USER's

conunands until the USER indicates with a CMD interrupt that the command results

have been read. At this point the OBOS clears the command status and deternmines if
tne disk can be released for use by another USER. If it can, the OBOS releases the disk
by clearing the Dn BUSY flag, otherwise the Dn BUSY" flag is left set and the disk is

used by the OBS for another operation, such as a disk copy.
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V. CONCLUSION

A. SUMMARY OF RESULTS

The principal goal of this thesis was the design of a flexible hardware kernal for a

multidisk control module (DCM) which supports concurrent disk operations.

Flexibility in three areas was desired:

• host bus interface - the ability to easily adapt to a variety of host bus
architectures

• host operating system interface - compatible with most modern operating
systems and easily integrated into an existing operating system

" disk drive interface - easily adaptable to a variety of disk drives.

The flexibility objectives of this thesis were met by using a modular design with

the interface dependent hardware contained in separate modules and isolating these

modules from the internal contro! modules. The host bus interface is isolated by dual

ported buffer memories with the bus dependent hardware contained in the host bus

control module. The disk drive interface is isolated by the disk controllers with the disk

drive dependent hardware in the disk interface modules.

An added benefit of the modular design is device manufacturer independence.

Each hardware module has a well-defined and relatively simple interface to adjoining

modules. This should make it a simple matter to use different devices in implementing
a module's function.

Concurrent disk operations are accomplished by using a separate disk controller

for each installed disk drive. Each disk controller is capable of controlling up to four

disk drives, but concurrent operation of all four disk drives is not possible. The DCM

design will allow up to four disk drives per disk controller which means a maximum of

L6 disk drives may be installed.

The DCM architecture separates the data transfer path from the control path.

This allows the control functions to operate at a different speed than the data transter

functions. The data transfer functions can be optimized to accommodate the data

transfer rate of the installed disk drives without affecting the control function

operation. The net result is that a relatively slow microprocessor can be used for

overall control and a fast direct memory access controller can be used to increase data
transfer rates.
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The DCYI could not be exercised as part of a host system because a VNIV bus

based host was not available. Such a host is being developed in another thesis and will

provide a test vehicle for the DCM. The DCM data tranfer circuits were tested with

Tandon Corp. model T.MI00-2 and TE.AC model FD55BV disk drives. The circuits

operated satisfactorily in all modes with only minor disk interface adjustments

necessary when switching between the two disk drives.

B. RECOMMENDATIONS FOR FUTURE RESEARCH

Two areas require further work: development of' efficient software to optimize

operation and investigation of methods to use non-DIP devices in prototvpig.
De\eloping the internal control software required to fully exploit the hardware
capabilities will be a major task. The software required to interact with multiple urcrs

and efficiently control concurrent data transfers is a relatively complex onboard

multiuser multitasking operating system.

Physical device size and linited prototype board space was a major problem
during hardware development. The prototype board was limited to accepting only

standard DIP devices which do not use area efficiently. For a large system, such as the

DCM, a means of prototyping with the more area efficient shrink-I)lP, PI.CC. and

PGA device packages should be developed.

1
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